3r^2/3+2=50

Simple and best practice solution for 3r^2/3+2=50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3r^2/3+2=50 equation:



3r^2/3+2=50
We move all terms to the left:
3r^2/3+2-(50)=0
We add all the numbers together, and all the variables
3r^2/3-48=0
We multiply all the terms by the denominator
3r^2-48*3=0
We add all the numbers together, and all the variables
3r^2-144=0
a = 3; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·3·(-144)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*3}=\frac{0-24\sqrt{3}}{6} =-\frac{24\sqrt{3}}{6} =-4\sqrt{3} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*3}=\frac{0+24\sqrt{3}}{6} =\frac{24\sqrt{3}}{6} =4\sqrt{3} $

See similar equations:

| x^2-(5x+1)/4+(2x-1)/2=0 | | x^2-(5x+1)/5+(2x-1)/2=0 | | 5-1.5x=0 | | 5x-1.5x=0 | | Y2-5/3y=25/36 | | -3x-5=2x-1 | | 7(7x+3)=6(9x-4) | | 25n=-2 | | 4(5x-3)+3(2x+4)= | | -7+3+10x=6-7x+12x | | 6^x+6=17^7x | | 2/5(1/2x+1/3)=2/3(1/4x−3) | | 5/8+y=2.7 | | 5+2x-1=6x+20-3x | | 25n+2=1998 | | 25n+478=1998 | | 2+9x-4=11x-6x+22 | | 2+9x-4=11x-6x+20-3x | | n+(n+10)=70 | | 25n+22=1998 | | 1/2x-1/2=35/12 | | -6(3x+4)=3(-7x+11) | | 5x-15+2x-5=8x+10 | | 7x=8x+30 | | 9(5x-3)=6(7x+1) | | 4x=2x+54x=2x+5 | | 6(2-7x)+x(7x-2=0) | | 7(8x-4)=6(9x+3) | | 2x+.8/9=1.2 | | 9x-(2x+9)=33 | | x^2+4x=61 | | -0.09p-0.04(2-4p)=0.04(p-3)-0.23 |

Equations solver categories